Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Oral Biosci ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521152

RESUMO

OBJECTIVES: Many patients with Alzheimer's disease experience behavioral and psychological symptoms of dementia (BPSD), which significantly affect their quality of life. It is known that 5-Hydroxytryptamine (5-HT) plays a crucial role in the development of BPSD. However, the relationship between tooth loss and Alzheimer's disease symptoms, particularly aggression, has remained unexplored. Although nutritional status is known to influence the progression of dementia, the specific effect of tooth loss on peripheral symptoms, notably aggression, is not well understood. METHODS: In our study, we conducted maxillary molar extractions in aged C57BL6J and AppNL-G-F mice and observed their condition over a 3-month period. During this time, we documented significant behavioral and genetic differences between mice in the control groups and mice that underwent tooth extraction. Notably, mice that underwent tooth extraction exhibited a considerable decline in cognitive function and an increase in aggression at 3 months after tooth extraction compared with the control groups (C57BL6J or AppNL-G-Fmice). RESULTS: Our findings suggest that molar loss may lead to reduced 5-HT levels in the hippocampus, possibly mediated by the trigeminal nerve, contributing to the development of aggression and BPSD in Alzheimer's disease. CONCLUSION: This study sheds light on the intricate relationships between oral health, 5-HT, and Alzheimer's disease symptoms, offering valuable insights into potential therapeutic avenues for managing BPSD in patients with dementia.

2.
Genes Cells ; 29(5): 432-437, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467515

RESUMO

The systemic effects of the artificial sweetener sorbitol on older adult individuals have not been elucidated. We assessed the effects of sorbitol consumption on cognitive and gingival health in a mouse model. Aged mice were fed 5% sorbitol for 3 months before their behavior was assessed, and brain and gingival tissues were collected. Long-term sorbitol consumption inhibited gingival tissue aging in aged mice. However, it caused cognitive decline and decreased brain-derived neurotrophic factor (BDNF) in the hippocampus. Sorbitol consumption did not affect homeostatic function; however, it may exert effects within the brain, particularly in the hippocampus.


Assuntos
Envelhecimento , Cognição , Hipocampo , Sorbitol , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Sorbitol/farmacologia , Sorbitol/administração & dosagem , Camundongos , Cognição/efeitos dos fármacos , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia
4.
Genes Cells ; 29(5): 417-422, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38379251

RESUMO

The exact sites of premature hair graying and whether tooth loss causes this condition remain unknown. In this study, we aimed to explore the effect of reduced mastication on premature hair graying. Maxillary first molars were extracted from young mice, and the mice were observed for 3 months, along with non-extraction control group mice. After 3 months, gray hair emerged in the interbrow region of mice in the tooth extraction group but not in the control group. The expression of tyrosinase-related protein-2 (TRP-2) mRNA was lower in the interbrow tissues of young mice without maxillary molars than in those with maxillary molars. Tooth loss leads to interbrow gray hair growth, possibly because of weakened trigeminal nerve input, suggesting that reduced mastication causes premature graying. Thus, prompt prosthetic treatment after molar loss is highly recommended.


Assuntos
Dente Molar , Animais , Camundongos , Dente Molar/metabolismo , Cor de Cabelo/genética , Maxila/metabolismo , Maxila/crescimento & desenvolvimento , Perda de Dente , Masculino , Camundongos Endogâmicos C57BL
5.
Nutrients ; 15(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764833

RESUMO

Oral aging causes conditions including periodontal disease. We investigated how the sugar alcohol erythritol, which has anti-caries effects, impacts aging periodontal tissues and gingival fibroblasts in mice and humans in vivo and in vitro. Mice were classified into three groups: control groups of six-week-old (YC) and eighteen-month-old mice (AC) and a group receiving 5% w/w erythritol water for 6 months (AE). After rearing, RNA was extracted from the gingiva, and the levels of aging-related molecules were measured using PCR. Immunostaining was performed for the aging markers p21, γH2AX, and NF-κB p65. p16, p21, γH2AX, IL-1ß, and TNFα mRNA expression levels were higher in the gingiva of the AC group than in the YC group, while this enhanced expression was significantly suppressed in AE gingiva. NF-κB p65 expression was high in the AC group but was strongly suppressed in the AE group. We induced senescence in cultured human gingival fibroblasts using H2O2 and lipopolysaccharide before erythritol treatment, which reduced elevated senescence-related marker (p16, p21, SA-ß-gal, IL-1ß, and TNFα) expression levels. Knockdown of PFK or PGAM promoted p16 and p21 mRNA expression, but erythritol subsequently rescued pyruvate production. Overall, intraoral erythritol administration may prevent age-related oral mucosal diseases.


Assuntos
Cárie Dentária , Gengiva , Humanos , Animais , Camundongos , Lactente , Eritritol/farmacologia , Fator de Necrose Tumoral alfa/genética , Cariostáticos , Peróxido de Hidrogênio , NF-kappa B , Fibroblastos , RNA Mensageiro
6.
Nutrients ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299434

RESUMO

Tooth loss and decreased masticatory function reportedly affect cognitive function; tooth loss allegedly induces astrogliosis and aging of astrocytes in the hippocampus and hypothalamus, which is a response specific to the central nervous system owing to homeostasis in different brain regions. Capsaicin, a component of red peppers, has positive effects on brain disorders in mice. Decreased expression of transient receptor potential vanilloid 1, a receptor of capsaicin, is associated with the development of dementia. In this study, we investigated the effect of capsaicin administration in aged mice (C57BL/6N mice) with reduced masticatory function owing to the extraction of maxillary molars to investigate preventive/therapeutic methods for cognitive decline attributed to age-related masticatory function loss. The results demonstrated that mice with impaired masticatory function showed decreased motor and cognitive function at the behavioral level. At the genetic level, neuroinflammation, microglial activity, and astrogliosis, such as increased glial fibrillary acidic protein levels, were observed in the mouse brain. The mice with extracted molars fed on a diet containing capsaicin for 3 months demonstrated improved behavioral levels and astrogliosis, which suggest that capsaicin is useful in maintaining brain function in cases of poor oral function and prosthetic difficulties.


Assuntos
Capsaicina , Perda de Dente , Camundongos , Animais , Capsaicina/farmacologia , Gliose/tratamento farmacológico , Perda de Dente/tratamento farmacológico , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Canais de Cátion TRPV/metabolismo
7.
Nutrients ; 15(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37242280

RESUMO

The relationship between caloric and nutrient intake and overall health has been extensively studied. However, little research has focused on the impact of the hardness of staple foods on health. In this study, we investigated the effects of a soft diet on brain function and behavior in mice from an early age. Mice fed a soft diet for six months exhibited increased body weight and total cholesterol levels, along with impaired cognitive and motor function, heightened nocturnal activity, and increased aggression. Interestingly, when these mice were switched back to a solid diet for three months, their weight gain ceased, total cholesterol levels stabilized, cognitive function improved, and aggression decreased, while their nocturnal activity remained high. These findings suggest that long-term consumption of a soft diet during early development can influence various behaviors associated with anxiety and mood regulation, including weight gain, cognitive decline, impaired motor coordination, increased nocturnal activity, and heightened aggression. Therefore, the hardness of food can impact brain function, mental well-being, and motor skills during the developmental stage. Early consumption of hard foods may be crucial for promoting and maintaining healthy brain function.


Assuntos
Dieta , Ingestão de Energia , Camundongos , Animais , Aumento de Peso , Encéfalo , Colesterol/farmacologia
9.
Clin Exp Dent Res ; 8(4): 939-949, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491709

RESUMO

OBJECTIVE: To determine senescence-associated changes in the gingival tissues of aged mice and gingival fibroblast cultures. MATERIALS AND METHODS: The production of senescence-associated ß-galactosidase (SA-ß-gal) and mRNA expression of p16, p21, interleukin (IL)-1ß, and tumor necrosis factor α (TNF-α) were evaluated in gingival tissues, gingival fibroblasts of 10- and 20-month-old C57BL/6NCrl mice, and multiple-passaged and hydrogen peroxide-stimulated human gingival fibroblasts (HGFs). Changes in molecular expression in HGF cultures due to senescent cell elimination by the senolytic drug ABT-263 (Navitoclax) were analyzed. RESULTS: Compared to 10-week-old mice, the 20-month-old mice had higher numbers of M1 macrophages. The proportion of cells expressing SA-ß-gal were also higher in 20- month-old mice than in 10-week-old-mice. Gingival fibroblasts in 20-month-old mice expressed less collagen 1a1, collagen 4a1, and collagen 4a2 mRNA than those in 10-week-old mice. Compared to control cells, H2O2 treated HGF cells expressed higher levels of SA-ß-gal and p16, p21, IL-1ß, and TNF-α. Furthermore, ABT-263 suppressed HGF cell expression of cytokines after senescence induction. CONCLUSIONS: Senescence-associated changes were observed in the gingival tissues of aged mice and HGF cultures. In addition, the potential of senolytic drugs to modify aging-related changes in the gingiva was shown.


Assuntos
Gengiva , Fator de Necrose Tumoral alfa , Animais , Fibroblastos , Humanos , Peróxido de Hidrogênio , Lactente , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Senoterapia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
10.
Sci Rep ; 12(1): 6409, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35437315

RESUMO

Age-related tooth loss impedes mastication. Epidemiological and physiological studies have reported that poor oral hygiene and occlusion are associated with cognitive decline. In the present study, we analyzed the mechanism by which decreased occlusal support following bilateral extraction of the maxillary first molars affects cognitive functions in young and aged mice and examined the expression of brain-function-related genes in the hippocampus and hypothalamus. We observed decreased working memory, enhanced restlessness, and increased nocturnal activity in aged mice with molar extraction compared with that in mice with intact molars. Furthermore, in the hypothalamus and hippocampus of molar-extracted aged mice, the transcript-level expression of Bdnf, Rbfox3, and Fos decreased, while that of Cdkn2a and Aif1 increased. Thus, decreased occlusal support after maxillary first molar extraction may affect cognitive function and activity in mice by influencing aging, neural activity, and neuroinflammation in the hippocampus and hypothalamus.


Assuntos
Gliose , Perda de Dente , Animais , Gliose/metabolismo , Hipocampo/metabolismo , Hipotálamo , Camundongos , Dente Molar , Perda de Dente/complicações
11.
Materials (Basel) ; 14(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885437

RESUMO

Resin composites employing structural coloration have recently been developed. These resins match to various tooth shades despite being a single paste. To accomplish this, the filler and base resin are tightly bonded, which is thought to provide excellent discoloration resistance. Here, we investigated the surface properties of one of these resins, including the discoloration of the repolished surface. We developed an innovative in vitro method to adjust the repolished surface, in which structural degradation is removed according to scanning electron microscopy (SEM) observation rather than by the naked eye. The resin samples (20 mm (length) × 10 mm (width) × 4 mm (depth)) were manufactured using this resin material. After accelerated aging of the resin by alkaline degradation, the resin was repolished and the discoloration (ΔE*ab), surface roughness (the arithmetic mean roughness (Ra)), and glossiness (the 60° specular) were measured. SEM observation showed that the appearance of the bond between the organic composite filler and base resin on the repolished surface was different from that on the mirror-polished surface. This revealed that according to our in vitro method it was difficult to make the repolished surface structurally identical to the mirror-polished surface. Among the properties of the repolished surface, the degree of discoloration did not change despite the rougher and less glossy surface. It can be concluded that the factors that induce discoloration in this resin composite are independent of the surface roughness and glossiness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA